Discrete Probability Function or Not Examples
In this class, We discuss Discrete Probability Function or Not Examples.
For Complete YouTube Video: Click Here
The reader should have prior knowledge of the Probability mass function. Click Here.
Discrete probability function or Probability mass function
The function should satisfy the two conditions.
1) f(x) >= 0 for each real number x.
2) Σall x f(x) = 1
Example 1:
Check the following functions serve as probability mass function.
f(x) = (x -2)/2 for x = 1,2,3,4
Solution: can not be served.
f(1) is negative
Example 2:
h(x) = x^2/2 for x = 0, 1, 2, 3, 4
solution: can not be served.
The Sum of all five probabilities is 6/5.
Example 3:
A random variable X has the following probability distribution.
The below table shows the probability distribution.
Find k?
Solution:
Σall x f(x) = 1
0 + k + 2k + 2k + 3k + k^2 + 7k^2 + k = 1
9k + 8k^2 = 1
k = (-9 +- √81+32)/16
k = 0.102